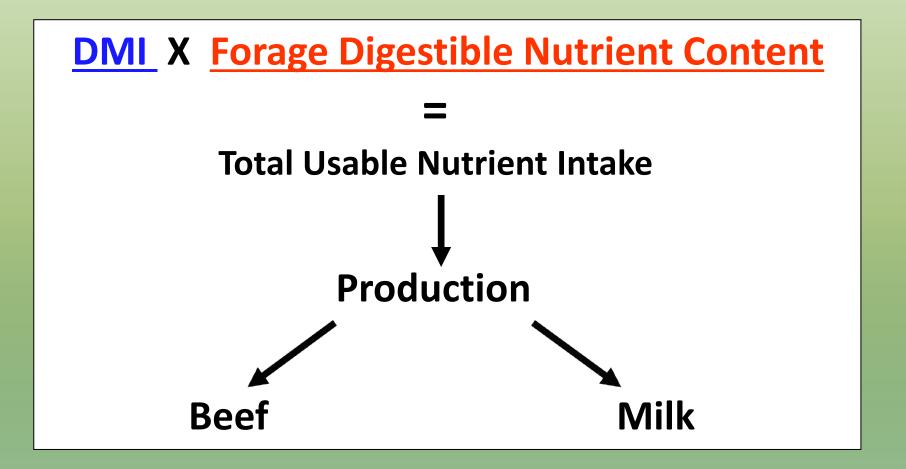
Cattle Nutrition and Forage Quality


Ted Probert Regional Dairy Specialist Hartville, MO probertt@missouri.edu

Animal nutrition in its broadest sense is the gathering of food, a source of nutrients, and the digestion and subsequent action of those nutrients on respective body tissue.

Classes of Nutrients

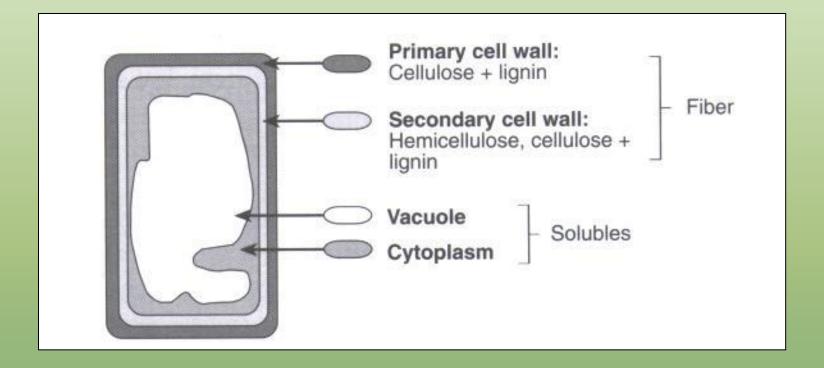
- Energy
 - Carbohydrates
 - Fiber
 - NFC
 - Fats
- Protein
- <u>Minerals</u>
- <u>Vitamins</u>
- Water

Body Functions Nutrient Partitioning

Lactation

Things to Remember When Feeding Ruminants

- 1. They are ruminants
- 2. The majority of their diet will consist of forage
- Since the diet consists largely of forage, the forage should supply the majority of the animals' nutrient requirements
- If forage is to supply the majority of nutrients the forage (hay) needs to be of the appropriate quality to do so



Forage Quality

Sample I.D.	<u>#1 Red Clover Hay</u>		<u>#2 Alfa</u>	alfa Hay
	<u>As Is</u>	Dry	<u>As Is</u>	Dry
Moisture%	9.591		14.607	
Dry Matter%	90.409	100.000	85.393	100.000
Crude Protein8	12.473	13.796	14.965	17.525
A.D. Fiber%	33.018	36.520	35.711	41.820
N.D. Fiber%	39.843	44.070	43.747	51.230
TDN8	52.283	57.829	45.645	53.453
NE Lact MCAL/LB	.524	.579	.451	.529
NE Gain MCAL/LB	.275	.304	.206	.241
NE Maint MCAL/LB	.507	.561	.421	.493
Digst E MCAL/LB	1.045	1.156	.931	1.069
Nitrogen%	1.996	2.207	2.394	2.804
Nitrate (NO#-)8	Negative		Negative	
RFV	128		102	
NameJohn AddressAva,				

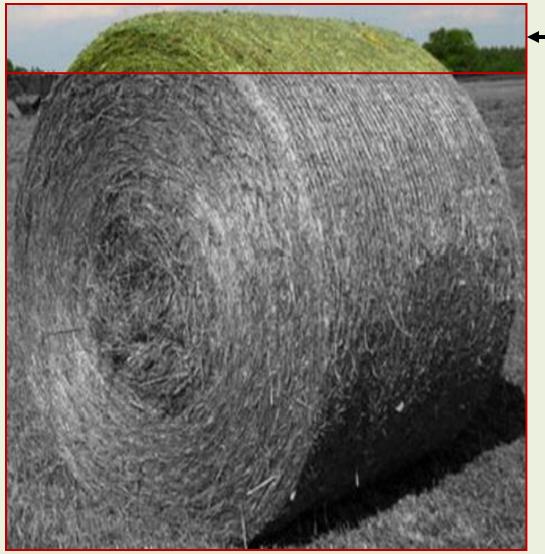
Plant cell with forage quality components of the cell wall.

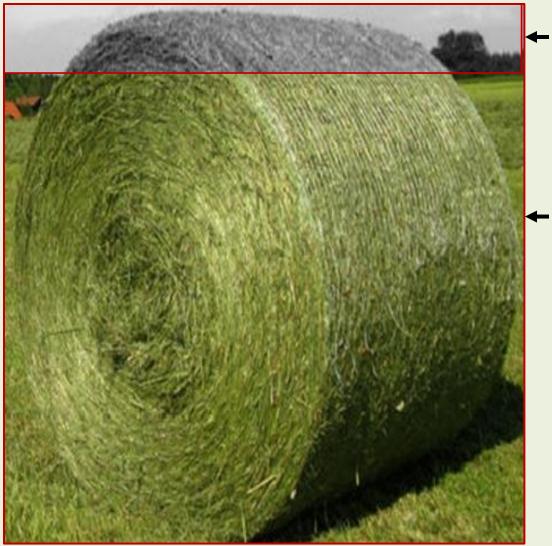
Custom Laboratory Inc.

	Monty Dade – <u>customlb@keinet.net</u>			
	.O. Box 391, 204 C Street olden City, MO 64748-9989	117 507 0007		
G	olden City, MO 04746-9969	- 417-007-0007		
Sample Date	02/10/05			
Sample I.D.	Orchardgrass Hay			
	As Is	Dry		
Moisture	12.000			
Dry Matter		100.000		
Crude Protein		15.000		
A.D. Fiber		35.000		
N.D. Fiber		55.000		
TDN	51.040	58.000		
NE Lact MCAL/LE	.510	.580		
NE Gain MCAL/LE	.264	.300		
NE Maint MCAL/LE	.502	.570		
Digst E MCAL/LE		1.100		
Nitrogen	2.108	2.396		
Nitrate (NO#-)9	Negative			

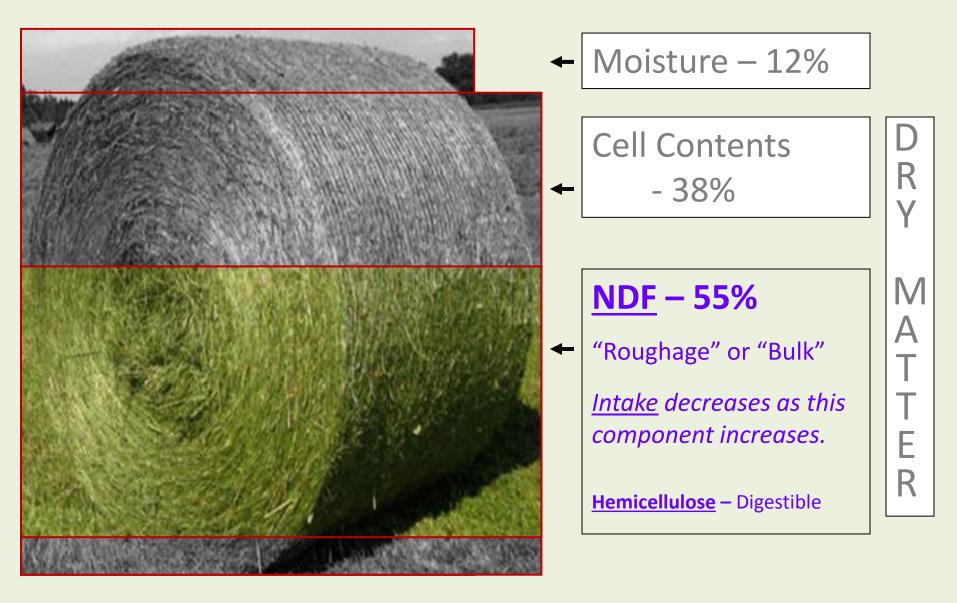
99

RFV

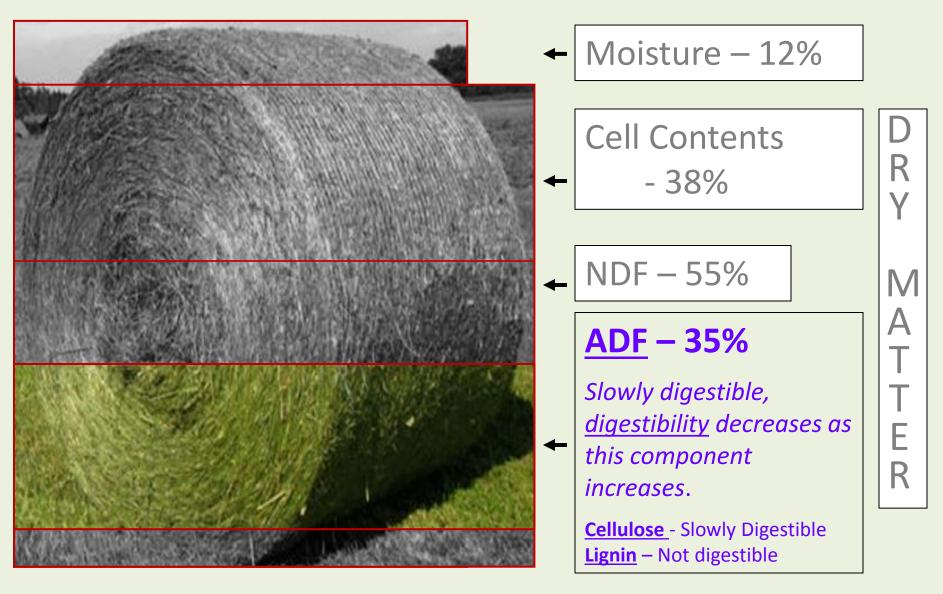

Name....John Doe Address....Hartville MO

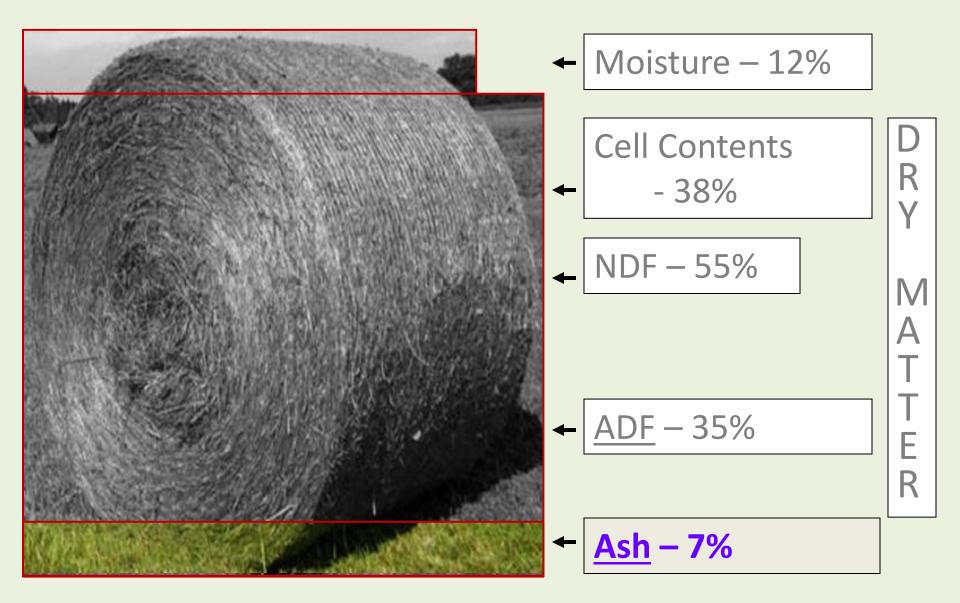


Hay – As Fed

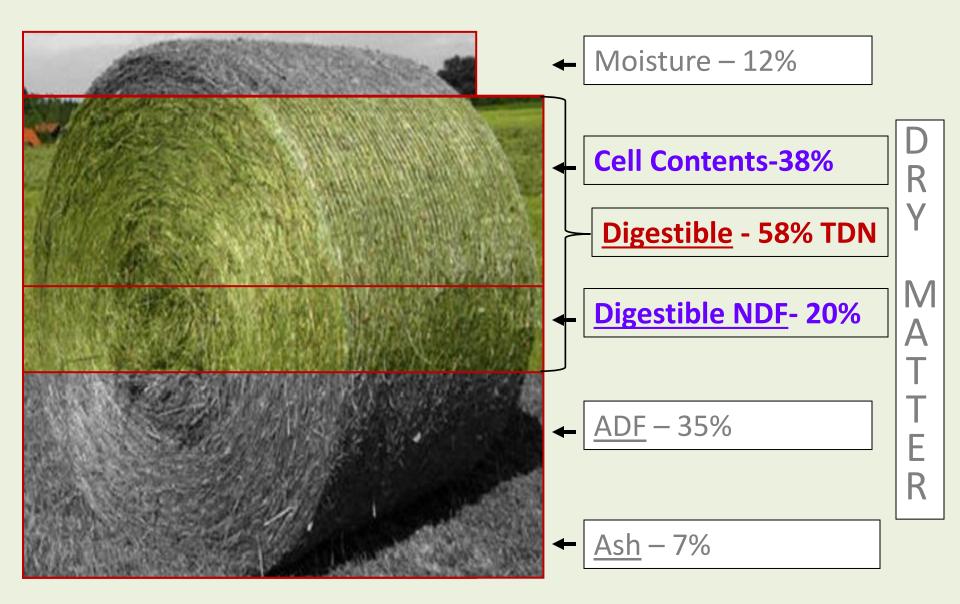


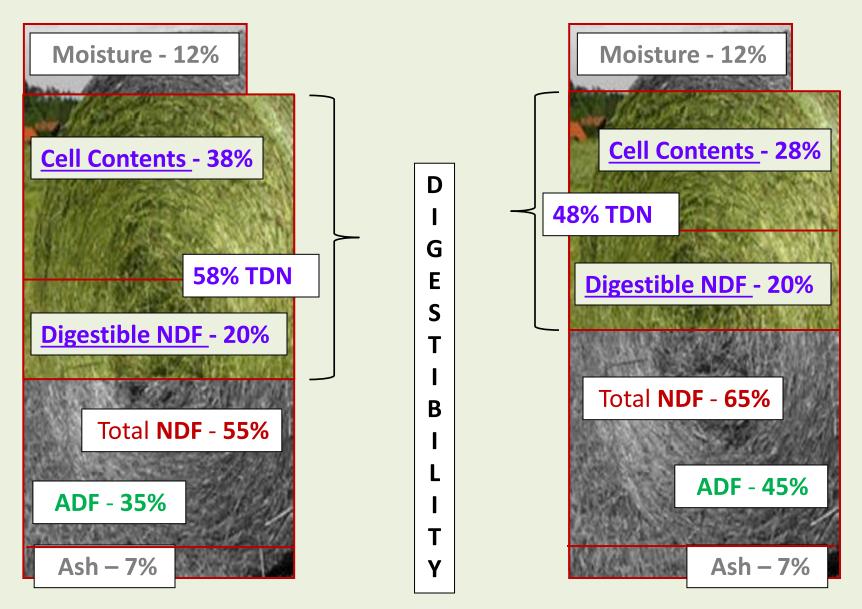
-Highly Digestible


- Sugars
- Starches
- Some Proteins
- Other Carbohydrates
- NPN
- Fats



UNIVERSITY OF MISSOURI Extension

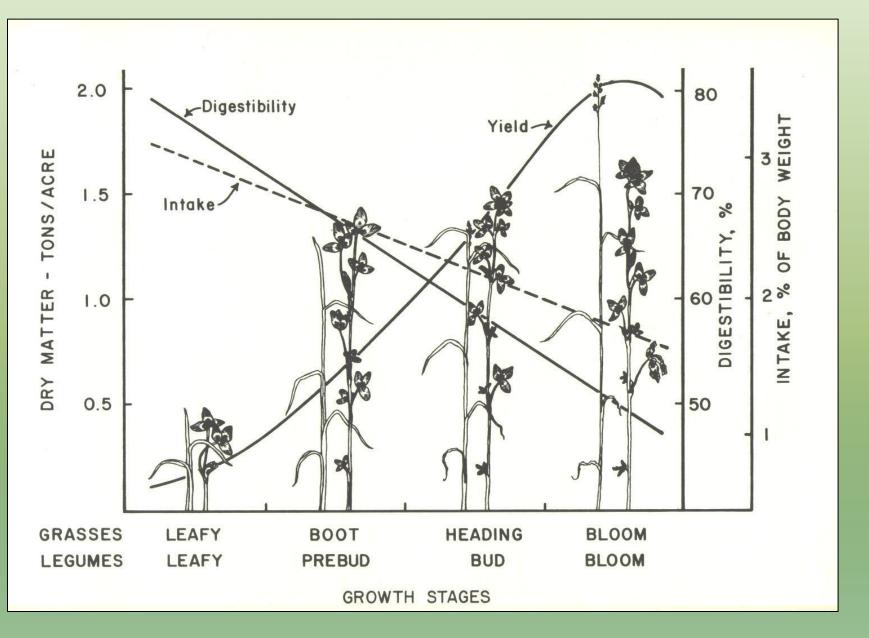



<u>Ash</u>

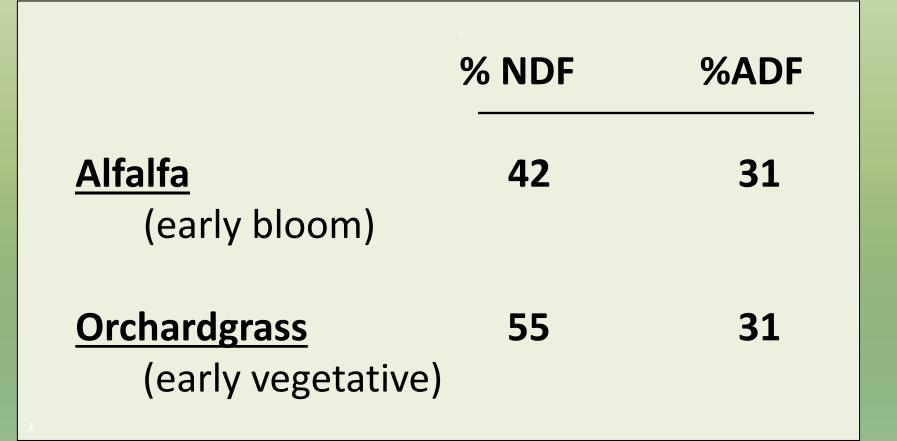
Calcium **Phosphorus** Magnesium **Potassium** Sodium Sulfur Iron Copper Manganese Zinc Aluminum Molybdenum Selenium

580# DDM/1000# bale 480# DDM/1000# bale 580/480=1.208 or 20% more DDM in the better hay. UNIVERSITY

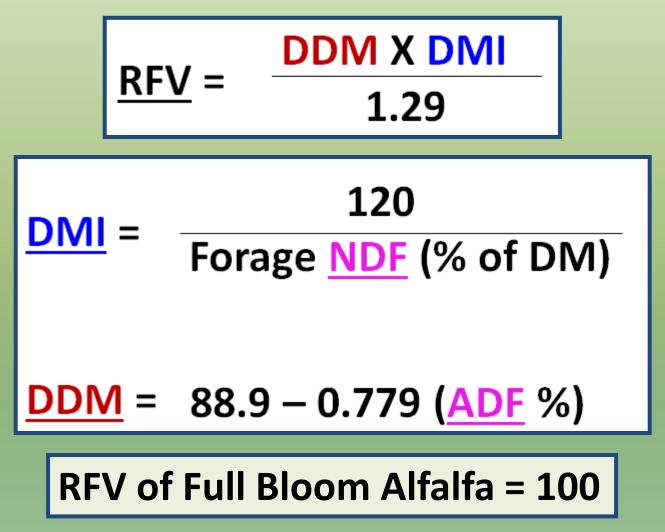
What Drives Forage Quality?


Forage	NDF %	ADF %	CP %	NE-m Mcal/lb	NE-g Mcal/Ib
Alfalfa					
Vegetative	35	28	24	0.68	0.42
Midbloom	46	35	17	0.59	0.31
Full Bloom	50	37	15	0.57	0.26
Tall Fescue					
Vegetative	55	30	20	0.68	0.42
Midbloom	63	35	16	0.61	0.34
Full Bloom	70	42	9	0.57	0.28

What is the primary factor influencing fiber content?


Plant maturity

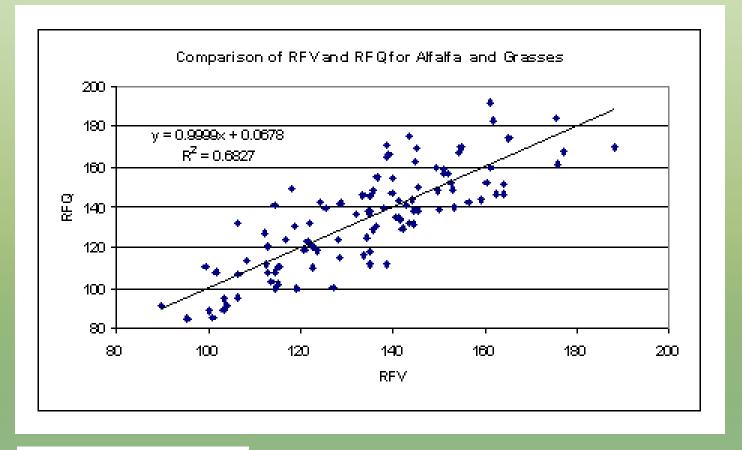
Comparative Fiber Characteristics of Grasses and Legumes



Estimating Dry Matter Intake

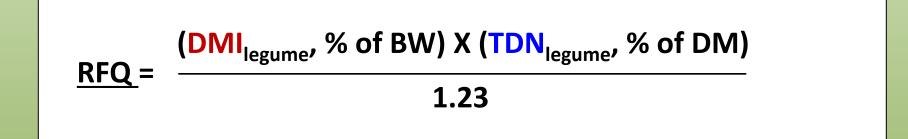
- 2.0% 3.0% BW
- 1.2 % 1.3% BW in NDF

RFV – A Measure of Overall Forage Quality



RFQ – An Improved Index

- RFV estimates digestibility based on ADF
- A better approach would be to actually measure digestibility
 - This is what is done when calculating RFQ
 - RFQ utilizes <u>48-hour in vitro NDF digestibility</u>



Undersander, Wisconsin

RFQ Calculations

TDN_{leg.} = (NFC*.98) + (CP*.93) + (FA*.97*2.25) + (NDFn) X (NDFD/100) - 7

Utilizing Hay in Cattle Diets

Comparison of Animal Performance from Hay of Good or Low Quality

Good Gra	ss Hay	Low Quality	Grass Hay
СР	13.14	СР	11.38
ADF	37.0	ADF	44.3
NDF	58.7	NDF	73.0
TDN	58.3	TDN	51.3
NE Maint	.568	NE Maint	.459
RFV	95	RFV	70

600 lb. Beef Steer, 2.0 lb. ADG

	Intake	Intake	СР	NEm	ADG
	% bw	lb DM	lb	Mcal	lb/day
Requirement	2.4	14.4	1.74	5.16	-
Good Grass	2.13	12.78	1.68	7.26	1.3
Common Grass	1.71	10.27	1.17	4.71	0

1200 lb. Beef Cow, average milking ability (20#) first 3-4 months post-partum

	Intake % bw	Intake Ib DM	CP Ib	NEm Mcal
Requirement	2.3	27.8	2.8	16.2
Good Grass	2.13	25.6	3.36	14.5
Common Grass	1.71	20.5	2.33	9.42

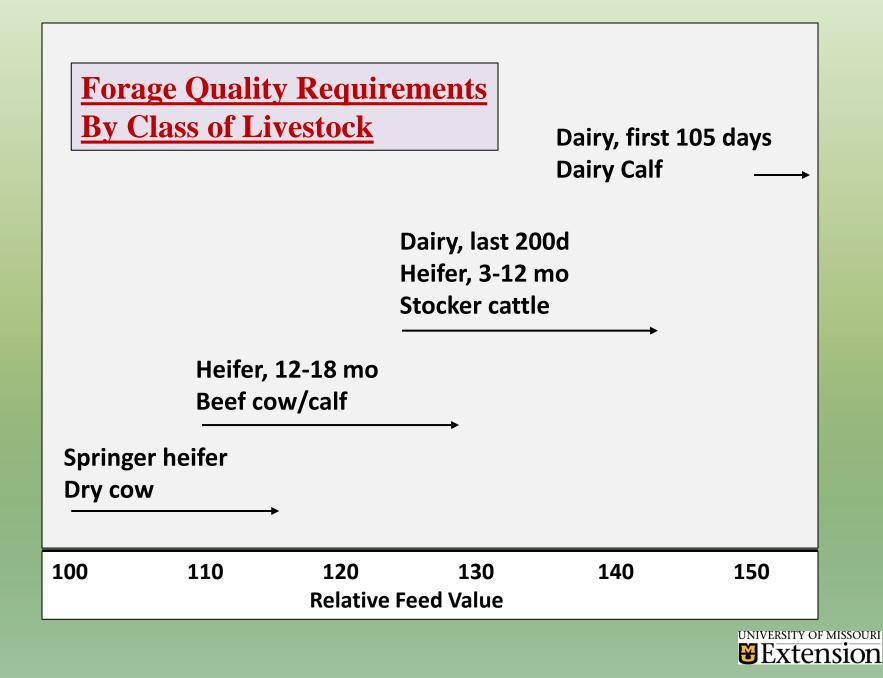
1200 lb. Beef Cow, low milking (10#) first 3-4 months post-partum

	Intake % bw	Intake Ib DM	CP Ib	NEm Mcal
Requirement	2.3	24.9	2.19	13.7
Good Grass	2.13	25.6	3.36	14.5
Common Grass	1.71	20.5	2.33	9.41

1200 lb. Dry Cow

	Intake % bw	Intake Ib DM	CP Ib	NEm Mcal
Requirement	2.0	24.2	1.45	9.0
Good Grass	2.13	25.6	3.36	14.9
Common Grass	1.71	20.5	2.33	9.41

Sample I.D.	<u>#1 Red Clover Hay</u>		<u>#2 Alfa</u>	alfa Hay
	<u>As Is</u>	Dry	<u>As Is</u>	Dry
Moisture%	9.591		14.607	
Dry Matter%	90.409	100.000	85.393	100.000
Crude Protein8	12.473	13.796	14.965	17.525
A.D. Fiber%	33.018	36.520	35.711	41.820
N.D. Fiber%	39.843	44.070	43.747	51.230
TDN8	52.283	57.829	45.645	53.453
NE Lact MCAL/LB	.524	.579	.451	.529
NE Gain MCAL/LB	.275	.304	.206	.241
NE Maint MCAL/LB	.507	.561	.421	.493
Digst E MCAL/LB	1.045	1.156	.931	1.069
Nitrogen%	1.996	2.207	2.394	2.804
Nitrate (NO#-)8	Negative		Negative	
RFV	128		102	
NameJohn AddressAva,				



Animal Requirements vs Forage Quality at Different Maturities

1200 lb. Beef Cow, average milking ability, first 3-4 months post-partum

	Intake % bw	Intake Ib DM	CP Ib	NEm Mcal
Requirement	2.3	27.8	2.8	16.2
Hay #1	2.8	34.1	4.70	19.1
Hay #2	2.5	29.0	5.12	14.3

Supplementation of Forages

- Supplementation will be necessary in some cases
 - Protein
 - Energy
 - Minerals
 - Vitamins

Energy – Protein Supplementation

- In most situations, energy (not protein) is the most limiting nutrient
- Energy sources
 - Grains (corn, milo, wheat, barley, etc)
 - High in starch
 - Will depress fiber fermentation in the rumen
 - 0.5% bw should be the limit for feeding grain
 For a 500 lb calf that is 2.5 lb.

Energy – Protein Supplementation

- By-products (CGF, soy hulls, wheat midds, DDGS)
 - Little or no starch
 - High in energy <u>digestible fiber</u>
 - Do not depress fiber digestion like starch

Table 2. Performance of steers receiving fescue hay supplemented with corn, soybean hulls or wheat middlings.

ltem	Control	Corn	Soybean hulls	Wheat middlings	
Hay dry matter intake (% body weight)	2.09	1.79	1.85	1.82	
Supplementary dry matter intake (% body weight)	0	0.7	0.7	0.7	
Average daily gain (lbs.)	0.66	1.32	1.5	1.52	
Adapted from Crawford and Garner (1993, p. 185).					

Some Common By-Product Feeds

Feedstuff	СР	NE Maint.
Ground Corn	9.4	.91
Corn Gluten Feed	25.6	.78
Dried Distillers Grain	30.0	.93
Hominy Feed	11.9	.85
Rice Bran	15.5	.93
Soy Hulls	13.9	.66
Wheat Midds	18.5	.76

Minerals

<u>Salt</u>

- Most forages are low in sodium (Na)
 - Supplementing with common white or red salt (either loose or block) is cheap, easy insurance

Minerals

Salt

Macro-minerals (Ca, P, K, Mg)

- Calcium (Ca) and Phosphorus (P) will need to be supplemented in most cases
- Potassium should be adequate in most hay
- Magnesium (Mg) will be adequate for most cattle but supplementation may be needed for lactating cows: reqt. - .20% of diet

Minerals

- Salt
- Macro-minerals
- Micro-minerals
 - Copper
 - Zinc
 - Selenium

<u>Vitamin A</u>

- Vitamin A is not found in hay. Hay contains the Vitamin A precursor Beta-Carotene that is converted to Vitamin A by the animal.
- Beta-Carotene is present in green plants but is not stable once forages have been harvested.

- <u>Vitamin A</u>
- Supplement as follows
 - Calves:
 - Pregnant Cows:
 - Lactating Cows:

20,000 IU per day

30,000 IU per day

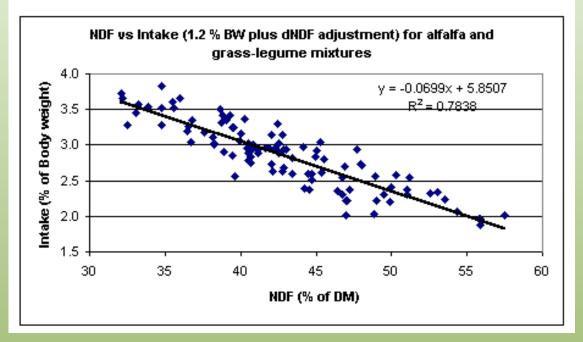
45,000 IU per day

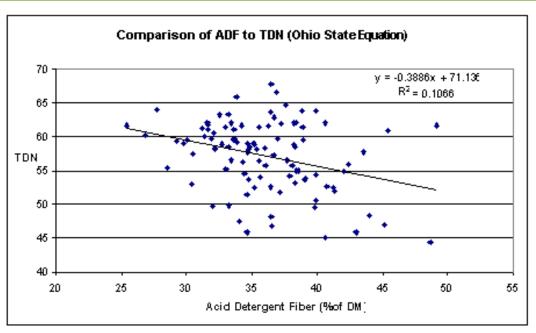
<u>Vitamin D</u>

- Under normal conditions, cattle receive adequate vitamin D from exposure to direct sunlight or from consumption of three to four pounds of sun-cured forages daily.
 - Supplementation at 125 IU per pound of diet DM will alleviate potential shortages.

• <u>Vitamin E</u>

- Most rations fed to beef cattle in Missouri are adequate in vitamin E
- Can be supplemented as a precaution


Conclusion


- Forages are the cornerstone of ruminant nutrition
- Forage quality needs to match production expectations
- In cases where forage quality is not optimum supplementation will be necessary

